This is a Passivhaus Basics blog post that gives an overview of a specific aspect of the Passivhaus Standard.

The international Passivhaus Standard is a clearly defined and rigorous standard for energy efficiency, comfort and quality assurance of buildings. Designing a building to achieve the standard requires detailed knowledge and a rigorous methodical approach to design and documentation. To ensure this happens, it is possible to train and qualify as a Certified Passivhaus Designer or Consultant.

The route to certification is the same for a designer or a consultant. It is only the individual’s prior qualifications and experience that determines if they qualify as one or the other. For clarity, this post will only refer to a Certified Passivhaus Designer, but for all intents and purposes, ‘designer’ is interchangeable with ‘consultant’ in this context.

A Certified Passivhaus Designer, regardless of their prior qualification, works across disciplines on a Passivhaus project. Their role integrates architecture, structure, building services, building science, energy modeling and construction detailing. They will at times both support and challenge the other designers on a Passivhaus Project.

The Certified Passivhaus Designer on a project doesn’t need to be completely independent. They can also be the architect, structural engineer, building services engineer, or another consultant on the team. And the same person fulfilling two roles does have advantages. However, in many cases combining two roles requires more time and work than one individual has available. Regardless, it is best if the Certified Passivhaus Designer is an integral part of the design team rather than just an occasional consultant.

The Passivhaus Building Certifier must be independent of the design team.

A Certified Passivhaus Designer brings the detailed knowledge and rigorous methodical approach needed to design buildings to the international Passivhaus Standard.

043 What is a Passivhaus Designer

Continue reading

This blog post is a review of “The Passivhaus Designer’s Manual: A technical guide to low and zero energy buildings” published in October 2015 and edited by Christina J. Hopfe and Robert S. Mcleod. Until now, there hasn’t been an English language manual for Passivhaus Designers. Training courses include relevant teaching material, but it is only available for course attendees and makes the most sense in the context of the course. This book covers all the main topics of a Passivhaus Designer course in an accessible and technically detailed format.

It is intended to provide a technical reference on important topics that often require more detailed explanations than can be found in most introductory handbooks. It is assumed that those reading the book will already be familiar with the fundamental principles of low energy design.

It is a design-focussed manual, bringing the academic and practice-based knowledge of the long list of authors together into one volume. Suitable background information is provided for each topic, but the main thrust is towards practical application in designing Passivhaus, or low and ‘zero-energy’ buildings.

Passive buildings are not all about technology. Their greatest benefits are not in avoided costs and emissions but in quality of life. Why did people meeting around our dining room table stay alert and cheerful all day, than in an ordinary office, become sleepy and irritable in half an hour?
– Amory B. Lovins, Cofounder and Chief Scientist, Rocky Mountain Institute

The Passivhaus Designer’s Manual could easily be the textbook for a Passivhaus Designers course. It will certainly become the reference book of choice for many Passivhaus Designers and the source of self-study for many aspiring Passivhaus Designers

042 Passivhaus Designers Manual sm
Continue reading

This is a Passivhaus Basics blog post that gives an overview of a specific aspect of the Passivhaus Standard.

The Passive House Planning Package (PHPP) is one of the most powerful design tools available for designing low energy buildings. It can seem intimidating as an extensive programme of interlinked worksheets, typically used in Micorsoft Excel. However, when viewed worksheet by worksheet is it apparent how straightforward it is.

It is a necessary part of Passivhaus design, both for Passivhaus Designers and Consultants and for Passivhaus Building Certifiers. For designers, it is a useful tool at all stages as detail is gradually built up. And it provides a large degree of the all-critical quality assurance of the international Passivhaus Standard. And finally it is the tool used for certification of a Passivhaus Building.

At it’s most basic, the Passive House Planning Package (PHPP) is a collection of clearly defined building physics algorithms. When the required information is entered, accurate reliable results are produced. And it continues to be developed as the Passivhaus Standard evolves and the world transitions towards a renewable energy future. (No matter how slow that transition might seem to be going currently!)

The Passive House Planning Package (PHPP): design tool, quality assurance tool and certification tool + all the essential building physics a low energy building needs.

040 What is the Passive House Planning Package PHPP?

Continue reading

Volkswagen has been caught out cheating emissions tests. There is a gap between the performance promised by the car manufacturer and how Volkswagen cars perform in reality. There has been strong reaction to this in many countries and in the media.

Does the same problem exist with our buildings? There is plenty of talk about the “performance gap” in the construction industry, but no major outcries like there has been with Volkswagen.

The building performance gap encompasses energy consumption, CO2 emissions and occupant comfort.

So, is building performance more complex than car performance? Or do we just accept that buildings don’t perform as predicted?

There is a whole host of reasons for the building performance gap. None of them are insurmountable, though.

How can I say this with confidence? Because there is ample evidence that the building performance gap can be eliminated.

The international Passivhaus Standard eliminates the building performance gap.

039 Mind the building performance gap
Continue reading

This is a Passivhaus Basics blog post that gives an overview of a specific aspect of the Passivhaus Standard.

Windows, doors, rooflights, curtain walling and any other glazed elements often lose (or gain) significantly more heat than the surrounding walls or roof of the thermal envelope. For this reason, the international Passivhaus Standard pays particularly close attention to the design and specification of glazed elements.

This blog post looks at Passivhaus Windows as these are usually the main glazed element of a Passivhaus building. Other glazed elements can be considered along similar lines.

Reducing heat loss conserves energy, but it’s not just about energy efficiency. Reducing heat loss is also about providing optimum comfort for the people using the building. This is, after all, what the international Passivhaus Standard is all about: providing exceptional comfort whilst being radically energy efficient.

The international Passivhaus Standard also provides healthy living environments. Passivhaus buildings have plentiful clean fresh air and are free from mould. And the rigorous quality assurance of the standard results in highly durable buildings.

Passivhaus Windows have an important role in all of these aspects: Energy Efficiency, Comfort, Health and Durability.

What is a Passivhaus Window?
Continue reading